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VALUE TH EOR Y W I T H O U T  E FFI C I ENCY *

by

Pradeep Dubey,1 Abraham Neyman2 and Robert James Weber1

0. Introduction

Recently attention has been focused on generalizations and analogues

of the Shapley value that do not enjoy the efficiency, or Pareto optiinality,

property ([7], (9]). This has stemmed from the search for value functions

that describe the prospects of playing different roles in a game (instead

of describing fair division, in which case efficiency is a natural require-

ment). The purpose of this paper is to treat the subject front an axioma—

tic viewpoint, i.e., to characterize the class of operators that is obtained

by omitting the efficiency axiom from the axioms defining the Shapley value.

We consider both finite—p layer and nonatomic games. In the finite case,

a complete solution is given; in the nonatomic case, a complete solution

is given for the important space pNA

1. The Finite Case

Let U be an infinite set, the universe of players. A g~ame on

U is a set function v : -
~ R with v(O) — 0 . We interpret the mem-

bers of U as players and the members of as coalitions. A set N C U

~The results presented here are the intersection of work done independently
by A. Neyman on the one hand, and P. Dubey and R. 3. Weber on the other.
This research was supported in part by grants from the National Science
Foundation and the Office of Naval Research.

1Cowles Foundation for Research in Economics, Yale University.

2Department of Mathematics, University of California at Berkeley.
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is a support of v if, for each S CU , v(S) — v(S (‘~ N) . A finite

game is a game which has a finite support. We denote by G the vector

space of all finite games, and by GN the subspace of C consisting of

• games with support N . Let AG (respectively, AGN ) be the subspace

H of G (respectively, cN ) of additive games. (Note that for N finite ,

AG~ is isomorphic to RN , the Euclidean space of dimension lN~ whose

axes are indexed by the elements of N . For convenience we shall often

use RN for AGN ~

Given a permutation 0 of U (i.e., a 1—1 mapping front U onto

itself) define the game 9*v by (0*v)(S) — v(8S) . Finally define v

to be monotonic if v(S) > v(T) whenever S ~~T

A semivalue on G is a function ~ ‘ : C -+ AG such that:

(1) ~ is linear,

(2) ~~~ — e*~v , for each permutation 8 of U

(3) if v is monotonic, then ~Vv is monotonic,

(4) if v c AG , then ‘I’v — v

These are the linearity, symmetry, monotonicity and projection axioms

([1], pp. 15—16). The projection axiom is an easy consequence of the more

familiar dummy axiom, which says that if I is a dummy player in v

(i.e., v(S u i) - v(S) + v(i) whenever I / S ) then (~v)(i) v(i)

(We conventionally omit the braces when indicating one—element sets.)

The quantity (‘Pv)(i) , for I c U , is a measure (according to ‘V )

of the prospect of having role i in the game v

Let ~ be a probability measure on [0,1] . For any I c U and

any v c G with finite support N , define ‘V~v c AG by

(1.1) (‘V v)(i) — ~ p~ (v(S U i) — v(S)]
SCN~4

- --~~~~~~~~~~~~ __ :
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(The symbols n and s generically denote the cardinalities of the sets

N and S •) Note that the right—hand side of (1.1) is independent of

the choice of N , so the definition makes sense.

We now come to our characterization of semivalues on G

Theorem la. For each probability measure ~ on [0,1) , is a semi—

value. Moreover, every semivalue on C is of this form, and the mapping

-
~ ‘Y~ is 1—1.

To prove this theorem we first characterize the senilvalues on the

vector space of games on a fixed finite—player set. This characterization

has appeared elsewhere (see, for example, [9]). For the sake of complete-

ness, we present an alternative derivation here. Then we proceed with

two different proofs which shed light on Theorem la from different view-

points. Let N CU be a finite set. A semivalue on GN is a function

G~ -~ AGN satisfying (1), (2N), (3), (4), where (2N) requires that

~N8~ — for every N—preserving permutation 8 of U

n—i n—i
- .1 Let pfl — (pc , ..., p~~1) be a vector such that s~0[ s 

—

and pfl > 0 . Define ~V
N : CN -

~ AG by
pn

(1.2) (~N )(j) — I
\

P S [ V(S U I) — v(S)J ~~ ~~~~~~~~~~~~~~~~~~~~

0

for all i c N  and

~5XI Ufl~S ,‘l &4ItV~Y aGe

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~-4______ &________~•~_ t_ .—- ------_•_—--- -~~~~~~~ a.-~
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Lemma. For each vector pfl , 
~~n 

is a seinivalue on GN . Moreover ,

semivalue on GN is of this form, and the mapping pfl -
~ is

Proof. It is straightforward to verify that each is indeed a semi-

value. Without loss of generality take N — {l, ..., n} , and let

be a semivalue on . Consider the vector space F of symmetric linear

functions from CN and AGN . For any nonempty S C. N , define the game

c GN by vs(T) 1 if SCT , vs(T) — 0 otherwise. It is veil—

known (see, for example, Appendix A of [1]) that {v s : 0 # S CN) is

a basis for ; therefore, every element f c F is uniquely determined

by its values on the games in this basis. From the symmetry axiom (2),

it is in fact sufficient to specify f(v) for every v c {VS(k) : 1 < k < n}

where S(k) — {i, ..., k) . Hence the dimension of F is at most n

For each 0 < k < n—i let ‘V (k) — , as defined by (1.2) when

- : —l
— [n i) and 0 for all 9. ~t k . It is clear that each

C F and {‘V(0)~ •. .,  ‘V (n_l)) is linearly independent in F . Thus

this set is a basis for F

Consider ‘V
N c F . It can be uniquely written as

— cØ~V (Ø) + ... + cfl1’V(~_1) . Therefore we must only show that
n-i

c — 1 and c — (c0, . .., c~~1) > 0 ; the desired result will then

N Nfollow upon taking p~ — ~ ) c5 , yielding ‘V ‘V n Suppose some

ck < 0 . Consider w c C defined by w(T) — 1 if I T I > k , v(T) — 0

otherwise. Then for any I e N , (,Nv)(i) — ck(’V(k)w)(i) — < 0 ;

• this contradicts the monotonicity axiom (3). Next consider c
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n-i
By the projection axiom (4), we must have (~V

Nv{1))(l) — ~ c5 
a v {1) (l) — 1 .D

s0

Proof of Theorem la. It is straightforward to verify that each is

a semivalue. Consider any semivalue ‘V . For each finite NCU , ‘V

Induces a semivalue on GN . From the preceding lemma we know that

each ‘V has the form

(~VNv ) ( i )  U p~ [ v ( S  U I)  — v ( S )]
• • scN\i

N n i  n—l~ Nwhere all PS > 0 and 
~ ~ 

— 1 . Furthermore , it Is a simple con—
- 

• • s—0
sequence of the symmetry axiom that there is a collection of constants

{ p ~ : s — 0, ... , n—i; n — 1, 2, ... } such that for all I C N C U  and

S CN \ i , 
~8 —

~~:.

Consider the collection of games {
~~

) , where in is

defined for any S C N C U  by ~~ (T) a ~ j f T~~~S , and 0 otherwise .

For any icN \$ ,

—

For any given player d c U\N , the game can be viewed as a game

in . It is easily shown that for any I c N\S

_ ~Nud + ~Nud 
- +

Since and ‘V~~
d are restrictions of the same operator ‘V , it fol—

lows that for any i £ N\S ,

(1.3) ~N(~~)(j) - - ~n+1 + ~n+1 
‘V
Nud (~N)(1)

Ii 
______ 

________________

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
-~ -— —~~~~~~ — --~~~~~~~~~~ - ____
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For notational ease , set — 
~~~ 

(for n 0, 1, 2, ... )

• Obviously, p~ dete rmines {o
~

}
~~.o . Moreover , using (1.3) it can be

shown by Induction tha t for any 0 ~ s n ,

fl+l 
— ( i ) n_ s {~ — 

~~~~ 
+ {n_s)~ + ... + ~~~~~~~~~

~~~~~~~~~~~~

where ~ is the standard “backwards difference” operator. Consequently,

we see that every sequence 
~~~ 

of real numbers uniquely defines a col-

lection {p} . It can be shown by direct summation that, for each n

the numbers 
[
[n;1)p~

]
~~~ add to . Therefore, the collection {p~}

will define a setnlvalue if and only if — 1 and all p ~ 0

It is veil—known (for example , Theorem 4.6 of [3]) that a sequence

{ )  (with — 1 ) and the successive differences (1)k~k0 of all

orders are nonnegat ive if and only If 
~~~~~
, ct~~ ... are the moments of a

fl uniquely—determined probability distribution ~ on [0 ,1] . In this case ,

1
since each 

~ 
— f  t~d~ ( t)  , it follows that each

+1 
- [n-s)~

s+l + .. . +

1
• f t’(1—c )~~

5d~(t) .0

I 
______________~I ~~~~

- • 
~~~~~~~~~~ 

- • •
~~

- • — •  —••——
~~
--- - • -

~~~~
- --•— ••

~~
-

— — _a 
•~ —— -—,— - __ _m_- •• - ~~~~~~~~~~~~~ — —  .~—



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~ - • -~~~ -~~
— -~--• -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~ 
____

-~ 7

Alternative Proof of Theorem la.

It suffices to establish that ‘V is of the form for a unique

:~ probability measure ~ on [0,1) . Let i c U be fixed . For each finite

subset N of u\i , ‘V induces a seinivalue on GNU1 , and hence , by

Lemna 1, induces a probability measure cN on the subsets of N such

- 

• 
that cN(S) — p~

1
~ . If N C N , then by considering the natural embedding

of G~
’
~ into GN , we have cN(S) — ~c~ (T) , where the summation runs

over all T for which S C T C N and T (1 N — S . Let {Nk) be an increas-

I 
sing sequence of finite subsets of u\i . The measures on the subsets of

• 

• 
the various Nk are “consistent,” and therefore by Kolmogorov ’s consistency

-
~ theorem ([5] ,  p. 94), the re is a sequence of (0,1)—valued random variables

{Y
4 
: j c  U Nk ) such that C

N 
(S) a Prob ( {j : Y 4 l} S) . Thu s {Y 4 }

k
is an exchangeable sequence of random variables. De Finetti’s theorem

([ 4] ,  sec. 9.6.1) asserts that the distribution of every exchangeable in—

finite sequence of random variables is a unique mixture of distributions

of sequences of independent identically—distributed random variables. 
I 

-

~ J As Prob(Y~ — 0 or 1) — 1 , there exists a unique probability measure

I on [0,1] such that for every finite sequence : j C N) of 0’s

lEe n — c
and l’s , Prob(Y4 — c4 for all j c N) — I t ~(l—t) ~d~(t)J .J 0

— 1))

It is obvious from the axiom of symmetry that the mixing measure

____________________________ J
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depends neither on the particular player i , nor on the sequence

and thus ~ is un iquely de term ined by ~ alone. 0

This alternative proof provides another view of the theorem. Let

(~ ,6,P) be a probability space, and {X
1 

: I c U ) a f amily of independen t

identically—distributed random variable distributed uniformly on [0,1]

If v c C and t e [0,1] , def ine the random var iable t~v( t) by

~v(t) — v({i : < t))  — v(~ i : X~ < t) )  . We then have the following

restatement of Theorem la:

Theorem la ’. For each probability measure ~ on [0 ,1) there is a semi—

value ‘V . on C def ined by

1
(‘V v ) ( I )  — f E(~v ( t ) j X 1 — t).d~(t)0 ’

Moreover , every semivalue on G is of this form and the mapping ~ -~~

is 1—1 .

The Shapley value [8] is defined as ~~ 
= , where )~ denotes

the Lebesque measure on [0,1] . This is the only semivalue which has

the eff iciency property: for every N CU and v c , ~v(N) — v(N)

Define the bounded—variation norm of a game v c C with support N

as M v ii — inf(v
+(N) + v (N)) , where the inf imum is taken over all pairs

v~, v_ of monotonic games for which v — v+ — v . With respect to this

norm on G , the Shapley value is a continuous linear operator of norm

1. (For any monotonic v~ , v_ e GN such that v — v~ — v

1kv II — fl~ v(i)  < ~(~v~ (i) + ~v_ (I ) )  — v~ (N) + v_(N) ; hence

1kv II < Il v il . But for any monotonic v c , lI~v IJ v(N) — liv II .)

We shall characterize the class of continuous semivalues on G .

~~~~~~~~~~~~ 
-
~~~~~~~~

— ‘
~~~~ 

— —— — -~~~~~~~~——-~~ii.
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Let W be the subset of L(0,l) of all nonnega tive func tions g w~rh
1.

• J g(t)dt— l
• 0

Theorem lb. For each g c W , the operator : C -
~~ AG defined by

1
‘V v( i) — J E(~v( t) lX ~~ 

— t) g(t)dt
0

is a continuous semivalue. Moreover, every continuous semivalue on C

is of this form. The map g -
~ ‘Y~~~ is a linear isonietry (that is,

— 11811 L ) .

Proof. Consider any g c V and define ~ fgdA . By Theorem la ’ ,

• ‘Vg 
- ‘V is a semlvalue. For any v e G

N 
, and monotonic games v~ , v _ with

v - v~ - 
~~~ II ’VgV Il - ~g

V i l  ~ fl’Vg
V~(i)i+fl’Vg

V_(i)I ~

f lg~ .( f lqv~ (i) I +flqv (i) I ) = lisil  .(v~ (N) +v _ (N) ) ; therefore ,

ll ’VgvII .5. lI g ll .II v ll . Hence ‘V g is continuous , and II~Vg II ~ il~Il
Next , consider any continuous semivalue Select any (rela—

tively) open interval J C  10 ,1] , and assume that E(J) M•A(J) . Fix

a player i c U , and for each k > 0 , select Nk
C U such that i c

N
and I N k I = k . Let vkc ~ 

k be def ined by vk(S) — A( [ 0 , ~
] 1\ 3)

• By the law of large numbers, lim inf ‘V
~
vk(i) 

> .
~
.
~ (J) — ~.)(J) . There—

fore II~Y , Vk II — fl’V~
vk

(I > M . ) ~(3 )  , while each tjV k Ii )(J) . Hence,

ll ’V~Ii > M . The continuity of ‘V~ implies that II ’V~II is finite. Con—

sequently, W — sup {~ (J ) /A (J )  : 3 is an interval in [0,1)) < , and

the Radon—Nikodym derivative d~ /d A — g is in V . Therefore ~~~~~ 
—

and II iV gII .~ i i a  Il~Ii . 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- :  _ _ _ _  
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2. The Inf ini te  Case

All definitions and notation are accordtng to [1]. Let (I,C)

be a measure spa ce isomorphic to ([0,1), 8) , wi~ere B is the c—field

• 
• of Borel subsets of [0,1] . The members of  I are called players, the

members of C coalitions, and set functions are called games. Let BV

be the space of bounded—variation set functions on (I ,C) . The space of

all bounded , finitely—additive set functions is denoted FA , and its sub—

space of all nonatomic measures is denoted NA . Denote by G the group

of autom~rphisms of (I ,C) . For each e e G , 8* : BV -
~~ BV is def ined

by 8*v(S)  — v( 6S) . If QCBV then Q+ denotes the subset of Q of

all monotonic set functions. A subset Q of BV is symmetric if for

each 0 e G , 0*QC Q . An operator ‘V : Q -
~~ BV is called positive if

‘V(Q~) C BV+ , and symmetric if for each 8 e G , 8*’V — ~?e* .

Let Q be a linear symmetrIc subspace of BV . A setnivalue on

Q is an operator ‘V from Q into FA such that :

(1) ‘V is linear ,

(2) ‘V is symmetric,

(3) ‘V is positive,

(4) if v c Q f lFA then ‘Vv v

We will characterize the seinivalues on pNA , the closed sub— - •

space of BV spanned by all powers of NA+ measures. This space plays

an important role in the theory of nonatomic games, and contains

many games of interest. For example, pNA contains all “vector measure

games” satisfying appropriate differentiability conditions, i.e.,all set

functions of the form foj~ , where i — (p~, ~~~~
•‘  ~ 1) is a nonatomic

finite—dimensional vector measure and f is an appropriately differentiable

real—valued function defined on the range of ~~i , with f(O) — 0 . As

— — ——~-~~ —— 
—  

~~~~~~ -

_______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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our main theorem in this section uses notation and terminology related to

the “extension” of a game , we restate here relevant definitions and results

from [1). 7 denotes the family of all measurable functions from (I,C)

to ([0,1), 8) . There is a partial order on I : f > g if f(s) > g(s)

for all s c I . A real valued function w on I with w(0) — 0 is

called an ideal set_function; it is called monotonic if f > g implies

w (f) > w(g) . The characteristic function of a member S of C is de-

noted . We will sometimes denote X
~ 

by S and t~~~~~
1 

by t

It is shown in [1; Theorem C] that there is a unique monotonicity—

preserving linear mapping which associates with each v c pNA an ideal

set function v* , such that (v.w)* — v*~w~ for all v , w c pNA , and

f f.dp for all ~~i c NA and f c I .

Denote ~v*(t,S) = (d/dT).v *(tXI
+t.X

S)I,_O 
. By Theorem H of (1]

we know that for each v e pNA and each S c C , the derivative av*(t,S)

exists for almost all t in [0,1] , and is integrable over [0,1] as

a function of t

Recall that W is the set of nonnegative functions g c L,,(O ,l)
1

such that J g(t)dt — 1 .
0

Theorem 2. For each g £ V the operator ‘V g 
: pNA -‘ FA def ined by

1
‘~ v(S) f av*(t,S).g(t)dtg

is a aemivalue. Moreover, every semivalue on pNA is of this form . The

map g -

~~ 

IP
g of V onto the fam ily of semivalues on pNA is a lInear iso—

me try.

—‘ —~ •‘•—--‘ .—— 
— - —-‘- 

~~
-‘---_ —--- -

~~
-.- ____ .4
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• Proof. Let g e W be given. For v e pNA , Lemma 23.1 of [1] asserts

• 1 1

that f kv*(t ,S) I .dt < I~v~ . Hence I ’ V v(S)~ ~$ ~v*(t,S).g(t)dt~ < ~~~~~~~
0 g 0

this proves that ‘V
5
v is bounded. If S, T CI with S fl T — 0 then

~v*(t, T U S) — ~v*(t,T) + 3v*(t,S) for almost all t . Therefore

r
g
v (SUT) — ‘V g

v(S) + ‘V g(T) which proves that ‘V g 
takes pNA Into FA

Linearity of ‘V g follows from the linearity of the extension as well as

that of the derivative. Symmetry of follows from the fact that

a(8*v)*(t,S) — 3v*(t,8S) and thus 0*’VgV(S) = f~v*(t,0S).g(t)dt

— fa(e*v)*(t,S).g(t)dt = ~V~ (8*v)(S) . Let v c PNA . Then v~ is also

monotonic and Bv*(t,S) 
~ 
0 ; thus ‘V g

V is monotonic, which proves the

positivity of . Finally, any u c pNA fl FA is in NA (Corollary

5.3 of [1], and the continuity of the elements of the space AC ([1),

page 205), imply that ii is countably additive). Hence ~u*(t,S) — u (S)

and consequen tly ‘Vg
U = u . This completes the proof that ‘V g 

is a semi—

value.

Now, let ‘V be a semlvalue on pNA . Let ~ i be a fixed probability

measure in NA . Each f c L
1 induces a game V

f 
def ined by

V
f

(S) = f f(t)dt
0

S
In other words, f defines a function F : [0 ,1] -. R by F( s) — f f(t)dt

0
and V

f 
— Foli . As f c , F is absolutely continuous and therefore

V
f 

£ pNA . In analogy with the proof of PropositIon 6.1 of [1] it follows

that — C(f).~ , where C(f) is a constant independent of ~a . Ob—

serve that vf+g — V
f 
+ V

g 
thus the linearity of ‘V implies that C

is linear . We now proceed to show that C is continuous. Observe that

_ _ _ _ _ _ _ _  

_ _ _ _ _ _  _ _ _  _ _ _  

ii

~~~~~~ 
:: = r 

~~~~~~~~~~ ~
J—.’
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V
f lI — 

~~~~ 
Since pNA is internal ([ 1] ,  Proposition 7.19) , it is

1
a closed reproducing space and thus ([1], Proposition 4.3) ‘V is contin-

uous on pNA . That is, there exists a constant K with l l ’V v I l  
< K . I I v I I

which in particular implies that I C ( f ) I = M C ( f ) ~~II .5 K V
f II — K . I I f J ! L1

Hence C : L
1 
-. R is a continuou s linear functional and therefore is of

1
the form C ( f )  f f(t) g(t)dt for some g e L,, . We shall show tha tH
‘V — ‘V g As was shown in the beginning of the proof , ‘V~ (PNA ) C FA and

kg
V(S)I < I I g I ! . I i v J J  , which implies that ~Vg is continuous. For each

f c L
1 , ~v ( t ,S) — f(t).~i(S) for almost all t , and thus 4

‘V gVf(S) — u(S).ff(t)g(t)dt — C(f)•~ (S) — ‘Vvf
(S) and therefore ‘V g

V
f 

= ‘Vvf
The linear symmetric subspace spanned by {V

f 
: f c L1} is dense in pNA

(it contains ail powers of NA measures) . The operators ‘V and ‘I’s 
are

linear and symmetric and thus coincide on this subspace; as they are also

continuous , they coincide on pNA . It remains for us to show tha t

g c V . For v c NACFA fl pNA , it follows that av*(t,S) v(S)

1 1
Thus ‘V v ( S )  — (I g(t)dt)v (S) , which shows tha t f g(t)dt — 1 . Let

0 0 H
B — {t : g(t) < —c) and let f be the characteristic function of B

~ 
.

Then f ~ 0 and hemce V
f 

is monotonic. But as ~VgVf(I) — ff(t)g(t)dt

< —e.A(B~) ( A deno tes the Lebesgue measure on 1 0,1] ) and ‘Vg = ‘V

is positive, it. must be that A (B
~
) — 0 . As t tis holds for any c > 0

g is nonnegative. This completes the proof that any semivalue ‘V is

of the form ‘V g for some g c V

Now, for any $ £ W and c > 0 there exists a nonnegative f e L1 
with

— l  and f f ( t ) g ( t ) d t — u g h — c . Observe that hIV f hI — 11
~~

11L —l and that
1 1

Il lP gV f II — II~U — t  ; hence II’gM .. . ilsht . On the other hand , for v c pNA+ ~ 

11 TLT~
_
~~:1~ -

• 
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•
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1
II ’ V v fl — ‘V v ( I )  — f a v*(t , I ) .g (t ) dt  < ! I g !1 f av*(t,I).dt —g 

0

In the general case, when v is no t necessarily monotonic , let c > 0

be given. Set v — u—w , where u and w are in PNA+ and

h l v i l  + £ > l u l l + jiwl! ; such u and w exist because pNA is internal.

Then ll ’V~viI .~~. 
ii ’V~uht + hl ’VgWiI .5. iI~ hI (lu ll + lI w l i ) .s. II~ II (MV II + c)

• and if we let c -
~ 0 Il’VgV ll .s~ II g l~

.
l l v I l  ; this comple tes the proof

of the equality lI ’ Vg ll — I i $ it . 0

3. Remarks

Continuous semivalues are diagonal. (The proof in [6] that contin—

uous values are diagonal does not make use of the efficiency axiom and there—

fore the same proof works here.) Furthermore, semivalues on closed repro-

ducing spaces are diagonal.

The semivalues derived axiomatically on pNA can also be obtained

from a complementary, asymptotic point of view [2] which links the finite—

player and nonatomic approaches.
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